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The linear, normal mode instability of three-dimensional laminar and turbulent 
shear layers is studied. The flows consist of two streams semi-infinitely extended 
in the y-direction, flowing obliquely in the x-z plane. It is found that the stability 
of the flows depends on the main flow velocity components in the direction of 
the disturbance wave-number vector. Numerical calculations are performed to 
obtain the neutral stability curves. Under the usual parallel unperturbed flow 
assumption, the neutral stability curves pass through the origin of the a-R 
diagram, where a is the wave-number and R is the flow Reynolds number. It 
is also found that eddy viscosity has a destabilizing effect for small Reynolds 
numbers but a stabilizing effect at larger Reynolds numbers. Because any linear 
perturbation trajectory eventually leaves the unstable region of the a-R plane, 
it is probable that a Lin-Benney or Taylor-Goertler secondary instability ensues. 
Suitable components of the existing turbulence grow and develop into a large 
eddy system which causes rapid entrainment, giving rise to a turbulent burst. 
A first-order non-parallel correction is made to the neutral stability curves. 
The new curves have both upper and lower branches, and there exist minimum 
critical Reynolds numbers. 

1. Introduction 
Malkus (1956) postulated in his theory of turbulent shear flow that a turbulent 

flow is marginally stable in the Orr-Sommerfeld sense. Reynolds & Tiederman 
(1967) showed that the conjectures that the turbulent velocity profile has un- 
stable or marginally stable eigenvalues were incorrect. They found that the 
critical Reynolds number for experimental velocity profiles (for a channel flow) 
is a factor of 10 greater than the flow Reynolds number. However, the assumption 
of neglecting the interaction term in the stability calculations (interaction be- 
tween the infinitesimal wave and the background turbulence) is open to question. 

The object of the present investigation is to examine the stability of laminar 
and free turbulent shear layers from the viewpoint of the classical theory of 
hydrodynamic stability. It is well established that turbulent boundary layers 
have characteristic mean velocity profiles and that the Reynolds stresses 
which shape these profiles can be attributed to a scalar eddy viscosity. We shall 
examine the relations between mean velocity profile, the eddy viscosity and some 
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three-dimensional oscillations, for a special case of a three-dimensional shear 
layer. 

A turbulent layer has a sharp and contorted edge, known as the super layer. 
Our main idea is that the whole turbulent shear layer behaves as a special laminar 
layer, and that the contortions are similar to Tollmien-Schlichting waves. In  an 
oscillating turbulent flow, the massaging of small eddies by the oscillation creates 
Reynolds stresses. The concept of eddy viscosity offers an easy method of ex- 
pressing these stresses. Townsend (1 956) and other researchers have shown that 
for free flows the eddy viscosity may be assumed approximately constant at  the 
centre of the flow. However, the eddy viscosity cannot remain constant through- 
out the flow, due to the variable nature of turbulent fluctuations. Two things can 
happen. Either the Reynolds stresses, i.e. eddy viscosity, instantaneously follows 
the rate of strain, or it responds with some lag. A lag would lead to the concept 
of an eddy viscosity varying with the frequency and wave-number of the wave. 
Provided the length scale of the oscillations is large compared with the length 
scale of the turbulent eddies, it  is reasonable to assume the same form for eddy 
viscosity as that used to express the interaction of the mean flow and the tur- 
bulence. This assumption will be made in deriving the disturbance equations. 
For simplicity, we shall assume that the eddy viscosity is a scalar quantity, and 
that it varies with the distance across the flow. We shall assume a suitable eddy 
viscosity variation consistent with mixing length theory, and the experimental 
data available for free boundary layers. Since our mathematical methods are 
limited, we shall postulate some suitable eddy viscosity distribution and examine 
the consequences. We shall vary the ratio of ordinary to eddy viscosity at the 
centre of the flow and evaluate its relative influence on the amplification of 
waves. A similar problem for a laminar shear layer has been studied by Yamada 
(1960, 1965). For comparison, the stability of a laminar shear layer will be in- 
cluded along with the turbulent case. 

2. Mean equations of motion 
Consider two streams of a viscous incompressible fluid, semi-infinitely extended 

in the y-direction (figure 1). Initially, the upper stream, y > 0, has a mean 
velocity D: whose x and z components are 0, = I I cos 8, and vl = I u,* I sin O1 
respectively. The lower stream has a uniform velocity 8; whose x and z com- 
ponents are 0, = cos 19, and p, = lu;l sin8, respectively. The streams 
contact each other initially along the z-axis. Thus, the mean velocity field inside 
the turbulent boundary layer is twisted and is independent of z. Assuming that 
the stresses are proportional to the rate of strain, for a viscous, incompressible 
fluid with a variable eddy viscosity, we have the following set of mean equations 
of motion : 

Continuity: 
ai7 a7  -+- = 0. ax ay 

(2) 
-aO -aB i a P  
ax ay p a x  

Motion: U - + V -  = ---+( 
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-aV -aV i a F  a 2 7  a2V av,aV u-+v- = ---+(v+vt) -+- +2--, 
ax aY P a y  (ax2 a g )  ay ay 

-aW -aTV a2W a2W aV,aW u-+ v-- = (v+vt)  - 
ax ay ( a x 2  + ~ ) + ~ ~ ~  

(3) 

(4) 

where v is the kinematic viscosity, p = density, vt(y) = eddy viscosity distri- 
bution and u ( x , y ) ,  F(x,y) and W(x,  y )  are the mean velocity components in 
the x,  y and z directions respectively. The case v, = 0 corresponds to that of 
laminar flow. 

Y 

I 
1 

FIGURE 1. Initial velocity profile (uniform in the z-direction). 

Using an order of magnitude analysis and neglecting small order quantities, 
we finally get the following set of equations for the mean motion: 

aT7 aV -+- = 0, 
ax ay 

-a0 -aV 828 avtai7 u-+v- = (v+v,)-+--, 
ax ay aY2 aY aY 

aW -aW a2W avtaF u-+ v- = (v+vt)-+--. 
ax ay aY2 aY aY 

(7) 

The above set of mean equations of motion could also be derived from Rey- 
nolds equations for a turbulent flow by expressing Reynolds stresses in terms 
of eddy viscosity and mean velocity gradients. 

(i) vt = 0 (1aminarJow). From the continuity equation, one can define a stream 
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Let 

and 

where 

The velocity components, therefore, are 

where the superscript 'prime' denotes differentiation with respect to 7. 
Equations (6) and (7)  then become 

and 

f f " + 2 f "  = 0 

f g" + 2g" = 0, 

the boundary conditions, on which are 

- -  
and f '+ Uz/Ul ,  g'+ W,/U, = a2, y +  -m. (16) 

It should be noted that the x-component, D, satisfies the Blasius equation and 
is determined by the initial velocity components in the x-direction. However, 
the z-component, w, is determined by the initial velocity components in both x- 
and z-directions. Solution of (13 may be obtained numerically by the method 
given by Lessen (1 950). 

The velocity component in the z-direction is then given by 

g ' ( r )  = c, f ' (r)  f C 2 ,  (17) 

where c1 and c2 are integration constants. In  particular, when the x-component 
of the initial velocities of both streams are equal, then f '  is constant. The velocity 
distribution is given by 

f '  = 1,  g'(7) = a,-- '1 - "' erfc (:) . 
2 

(ii) vt + 0 (turbulent~ow). Now the functional form of the self-preserving flow is 

F = S ( Y / X )  ( 1 8 )  

r = hy/x, (19) 

(Townsend 1956). Therefore we select the new independent variable q as 

where A is a scale factor and is determined by the scale of turbulence. From (5) 
we can define a stream function @ with 

Let 

and 
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The velocity components, therefore, are 

v = Pl$’(7), = -vl[q5(q)--q$‘(q)]/A and w = Ulf’(r). (23) 

Equations ( 6 )  and (7 )  then become 

where vt= voG(r) ,  a = v/vo and R2 = ~ l x / ( v + v o )  = R,, which is essentially a 
constant when a fully developed turbulent flow is considered. 

The boundary conditions are 
- -  

$’+ 1, f ’ ( r )  + Wl/ul = a,, as r+m, (26) 

and $ I - +  D2/i7,, f’(r)  -+ V2/D1 = a2, as 7 -+ - 00. (27) 

For a particular case in which the x-components of the initial velocity of both 
streams are equal, $’(r) is a constant; and the velocity distribution is given by 

$’(r) = 1 (28) 
1 

and rf”(r) + l+a c r + G ( r ) f ” ( ~ ) + ~ G ’ ( ~ ) f ” ( ~ )  1 + a  = 0. (29) 

3. Disturbance equations 

small, the dimensionless velocity components may be written as 
Assuming that the flow is parallel, and that the disturbances to the flow are 

u = v+ul ,  v = vl, w = V+w1 (30) 

P = F+Pl, (31) 

and the dimensionless pressure as 

where the subscript ‘1’ denotes the disturbance quantities. By substituting the 
above quantities into the three-dimensional equations of motion, by assuming 
the same form for eddy viscosity as that used to express the interaction of the 
mean flow and turbulence, by subtracting the mean flow quantities from the 
resulting equations and by taking only terms linear in the disturbance, one 
obtains the following set of disturbance equations : 
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where R = 81101v is the Reynolds number and I, is the characteristic length 
I, = ( v x l ~ $  for linear flow; I, = xlA for turbulent flow. 

Let the disturbances be three-dimensional plane waves of the form 

(% 211, w1, Pl) = (W, SfY), WYf ,  R(Y)kXP Ilifaz+/3z-(wl, (36) 

where c = c, + ici is complex. Then, upon substituting (36) in (33)) (34) and (35), 
and using the Squire transformation (Squire 1933)) we finally obtain the follow- 
ing disturbance equation: 

2iG'(7) iG"(r/) 
-~ ( g " ' - Z 2 g f ) - ~  (g"+d2g), (37) 

ZRu aRu 

where ZB = aB+PV, 
&c" = ac, 

and Z2 = a2 +p2. 
For boundary conditions on (37), it suffices to specify that g is bounded through- 
out the flow field. 

Because (37) is of the fourth order, there exists a set of four linearly independent 
solutions of the equation: 

9 = clgl+c2g2+c3g3+c4g4. (38) 

The nature of the solutions g, and g, at large &R can be investigated by W.K.B. 
method, by introducing the following transformation into (37) : 

9(Y) = exp ( JP  dY). (39) 

Here p is to be expanded as follows: 

p = (ER)tpo+pl+ (ZR)-$p2+ . . .. 

g, 21 ((0 -c")a2}-P exp [ - I(idiR( 0 -c"))4dy], 

g4 II ((O-c")a2)-%exp [f(iZR(O-E))tdy]. (421 

(40) 

(41) 

Then, after inserting (39) into (37)) and using (40), we obtain 

It should be noted that when 

y+-co, gg+co, and y-fco, g4+co. 

Because for large ZR, g3 and g, are each unbounded somewhere in the flow field, 
they may be neglected in the solution of equation (37) for 'large' Reynolds 
numbers. In  fact, in our exact numerical analysis, we also have found that, 
for ZR > 10, the contribution from these viscous solutions to the eigenvalues is 
almost negligible. 

For the case where the wave-number vector is in the x-direction, the dis- 
turbance quantity may be expressed in the form 

Q = d Y )  exp [W - /34 1 (43) 
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then B and c" in (37) correspond respectively to p and c of equation (43). Only 
the velocity component in the z-direction is required in the stability considera- 
tion. As is seen from (37), the stability of the flow is determined by the mean flow 
velocity in the direction of the wave-number vector. This case is considered in 
our stability investigation. 

4. Boundary conditions 
For 8 = 8, = 8, = 4 5 O ,  o ( y ) - +  & 1 as y - f  +oo and 8", G(y) ,  G'(y), G"(y) 

all tend to zero as y+ & 00. Therefore, at  large y ,  the proper boundary conditions 

(44) 
are 

(45) 

g + m  = c1 ~ X P  ( - BY) + c2 ~ X P  ( - AY) 
9-m = c3e*p (BY) +c4exp (Ptg) ,  

where fi=B2+i(l-c")B12 and k=B2-i(l+c")BR. 

Equations (44) and (45) give the following four boundary conditions: 

In  the flow under investigation, both 0 and 0" are real and antisymmetric 
and = 0 (appendix); both O-Cr and 0" are odd functions of y for the real 
part and even functions for the imaginary part. Therefore, by the proper choice 
of the multiplying coefficients, each of the four independent solutions of the 
stability equation will be such that either the real part is even and the imaginary 
part odd, or vice versa. 

Since the equations and boundary conditions are homogeneous, and since 
both sets of symmetry conditions can be obtained from each other by multi- 
plying through with an imaginary constant, either symmetry will yield the same 
stability characteristics. Without loss of generality, it can then be assumed that 
all the four independent solutions are such that their real parts are symmetric 
and the imaginary parts antisymmetric. Thus the relevant boundary condition 
determinant is 
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When the integration is started from boundaries at infinity, we have in this 
case : 

and g = c,gIIl+c4gII, for Y < 0’ 

where gIlfm = exp ( gn+m = exp ( -Ply) ,  

SIIl-Co = exp (&Y), gIIZ-m = exP:(Bz’,y). (53) 

Using the symmetry property of g@), it can again be shown that the flow under 
investigation is equally stable or unstable for either the real part of g(y) sym- 
metric and imaginary part antisymmetric or vice versa. Then the relevant bound- 
ary condition determinant at the centre of the flow is: 

5. Numerical integration 
5.1. Mean velocity distribution for turbulent flow 

Since the exact data for the distribution of G(7) are not available, we have selected 
C(7) with some assumptions. These are as follows. (i)  Eddy viscosity must go 
to zero at 7 = & 00, since the outer fluid is laminar. (ii) Due to the symmetry of 
turbulent fluctuations in the two streams, the distribution of eddy viscosity 
should be symmetric in the 7 co-ordinate. From mixing length theory, the eddy 
viscosity can be expressed as 

du 
( 5 5 )  

where 1 is the mixing length and is constant. Since in our case the point of in- 
flexion of the velocity is at  7 = 0, the eddy viscosity is maximum at 7 = 0 and 
decreases as 171 increases. Now, for a constant eddy viscosity, G(7) = 1, the 
velocity profile is an error function, and therefore 

d u  
- = c,exp( -r2/2). 
a7 

This suggests that a plausible distribution of eddy 

vt = v,, exp (   AT^), 

viscosity may be of the form 

where ‘A’ is a constant and its approximate value is 4. Many numerical 
experiments were performed, trying different eddy viscosity distributions like 
exp ( -Ay4), exp (  AT/^), etc. It was observed that the distribution exp ( - Ayz) 
with A = 0.45 gives the best match with the experimental results available 
(Liepman & Laufer 1947). Therefore, G(7) = v,exp ( - 0 . 4 5 ~ ~ )  has been taken 
in all the numerical calculations. After substituting the expression for G(7), 
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f ' = c1 J exp ( - b7z]/(dl+B/4 + vdl+s/a)exp [ - ( A  + B)  7 9  dg + cz 

where c1 and c2 are integration constants and B = (1 + a)/2a. The velocity 
distribution for three values of cr, namely c = 0.50, c = 0.25 and c = 0.10, have 
been calculated, and these are plotted in figures 2 , 3  and 4. The slopes of velocity 
at the origin, for various a, are tabulated in table 1. 

47 

the solution of (29) is 

U f "(0) 
0.50 0-7547151334 
0.25 0.7459429921 
0.10 0.7387606073 

TABLE 1. First derivative of velocity a t  the centre 
of the flow for various u. 

L- 
-4 

FIGURE 2. Me5n velocity, its &st two derivatives and the eddy viscosity distribution 
for c = 0.10: - - -, experimental velocity profile. 

5.2. Inviscid stability 

(i) LaminarJlow. In  the limit R+a, (27) reduces to 

(O-a)(g""2g)-B"g = 0. 

For neutral oscillation c" = 0 (appendix), therefore, by the transformation 

= s'ls, (57) 

(58)  
One sees that, for the velocity distribution given by 0 = erf (Qy) the singularity 
in the above equation is removable, since 0'' -+ 0 as 0-t 0. In  fact, by taking the 
limit y+ 0,  onlo = - Q. The boundary conditions for G are 

the equation becomes G' = E2 + U / U  - G2. 

G = d ,  as y+-03,  
G =  -di, as y-t+co. 

(59) 
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Since the velocity is an odd function, g is either an even function or an odd func- 
tion; therefore, 

G = O  at  y=O. 

At large y, o+ 1 and 0" = - (y/247r) exp [ - $y2]; therefore, the asymptotic solu- 
tion for G can be written as 

FIGURE 3. Mean velocity and its fir& two derivatives for u = 0.25 : - - -, experimental 
velocity profile. 

U 
-40 -3.0 -2.0 - 1.0 2 0  / 3.0 4 4  

F I G ~ E  4. Mean velocity and its Grst two derivatives for d = 0.50: - - -, experimental 
velocity profile. 
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where G, is of the order (exp [ - $y2])k. The first approximation is Go = -a  at 
large y ,  and the second is 

GI = ( 1 / yln) exp [ - $y2] - 2E2 exp [ 2( diy + 2 3 1  erf ( &J + 2a). (61) 

The Adam-Bashforth method was used for finding the neutral wave-number 
&. The integration started from the asymptotic value for G at large y. The 

r 

-4 -3 -2 -1  0 1 2 3 4 

Y 
FIGURE 5 .  Inviscid instability disturbance function for cr = 0.10. 

0- P ( O ) / D ( O )  77’”(0)/77(0) P ( O ) / U ( O )  a 
0.50 - 0.3933505205 - 1‘891382120 8-988590344 0.5537 
0.25 - 0.27’20704232 - 2.325791024 2-690533 170 0-5539 
0.10 - 0.1731597635 - 2.545675155 - 3.464550769 0.5300 

TABLE 2. Inviscid instability eigenvalues for various CT. 

neutral wave-number was found to be di, = 0.5175. After scaling, Yamada’s 
(1960) result has the same value. 

(ii) Turbulent $ow. The inviscid disturbance equation for a turbulent flow is 
of the same form as that for a laminar flow. For neutral stability, g is symmetric 
and the boundary condition at  infinity is 

g’(oo)+&g(oo) = 0. (62) 

Integration can be started by taking g(0) = 1, and the boundary condition is 
satisfied at  infinity. The typical disturbance function g(y) for v = 0.1 has been 
plotted in figure 5 and the eigenvalues are tabulated in table 2. 

4 Fluid Mech. 38 
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5.3. Viscous instabizity 

Since we have taken the real part of all the four independent solutions to be 
symmetric and imaginary, part anti-symmetric (for the derivation of boundary 
conditions determinant), without loss of generality, the four solutions at y = 0 
may be assumed to be of the following form: 

I g1(0) = 1, gi(0) = 0, gi(0) = 0, gE(0) = 0, 

g,(O) = 0, g;,(O) = i, g;(o) = 0, g’i(0) = 0,  

g3(0) = 0, gi(0) = 0, g;(o) = 1, g:(o) = 0, 

g4(0) = 0, gi(0) = 0, g&1(0) = 0, gE(0) = i. 

Although it might have saved computation time to take only two asymptotic 
solutions a t  large y, and to integrate backward, this procedure would have 

U R, R E 

0.25 8.3 41.5 0.29 
0.10 8.22 90.5 0.27 

TABLE 3. Minimum critical Reynolds numbers with the 
non-parallel correction. 

B 

0.10 
0.25 
0.375 
0.40 
0.486175 
0.559105 
0.593190 
0.597752 
0.600793 
0.60200 

R 
0.798253 
2.47921 
4.97269 
5,73673 

10.0 
20.0 
40.0 
50.0 
70-0 

100.0 

&E* 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

TABLE 4. Eigenvalues of E and R for u = 0.50 and Er = 0. 

required extremely accurate asymptotic solutions, which are difficult to  obtain 
because the asymptotic series for the velocity profile converges slowly. Otherwise, 
if the starting solutions are not sufficiently accurate, a numerical error will 
grow exponentially due to the very large higher derivatives of the unbounded 
solutions. However, if the integration is started a t  a large distance, where higher 
order terms are negligibly small, backward integration is quite satisfactory. 
Both methods have been used and almost identical eigenvalues have been ob- 
tained. Backward integration uses about 8 the computing time, as compared 
with forward integration, and both methods were found quite satisfactory for 
R up to 80. For larger R, calculations may not be very accurate due to the rapidly 
varying nature of the solutions. Taylor series stepwise integration was used, 
and the first ten terms of the series were taken to extrapolate the value of g; 



Stability of three-dimensional laminar and turbulent shear layers 51 

di 
0.8 
0.20 
0.30 
0.40 
0.472826 
0.509090 
0.531426 
0.577363 
0.589956 

0.0346887 
0.037046 
0.0391451 
0-0423097 
0.05 
0.065 
0.10 
0-20 
0.315 
0.427273 
0.546789 

0.0680593 
0.0799916 

R &Et d R 
0.696308 0.0 0.106096 11.0 
2.16668 0.0 0.15 6.76547 
4.06091 0.0 0.351965 11.0 
7.38146 0.0 0.446625 20.0 

12.0 0.0 0.510478 40.0 
16.0 0.0 0.536226 80.0 
20.0 0.0 
40.0 0.0 0.128 40.0 
80.0 0.0 0.18 14.6689 

0.25 12.6003 
70.0 0.025 0.35 16.9433 
40.0 0.025 0.437655 30.0 
20.0 0.025 0.50 79.5108 
12.0 0.025 
5.46667 0.025 0.175 52.2647 
2.97352 0.025 0.25 25.7593 
2.41039 0.025 0.37 36.3 
3-4 0.025 0-42 53-9579 
6.0 0.025 

12.0 0.025 0.24 85.5473 
40.0 0.025 0.32 62.4827 

0.10 1.27793 
80.0 0.050 0.20 2.59675 
30.0 0.050 0.20 3.15772 

TABLE 5. Eigenvalues of d and R for u = 0.25 and Cr = 0. 

%< 

0.050 
0.050 
0.050 
0.050 
0.050 
0.050 

0.075 
0.075 
0.075 
0.075 
0.075 
0.075 

0.10 
0.10 
0.10 
0.10 

0.125 
0.125 
0.01 
0.01 
0.02 

E 

0.08 
0.20 
0.30 
0.36 
0.470315 
0.541869 

0.04 

0.0185 
0.19 1949 
0.050 
0.0972284 
0.294388 
0.403850 

0.0433774 
0.0549767 
0.085 
0.10 
0.14 
0.248580 

R -I  R aci d 

0.961793 0.0 0.40 18.1346 
3.12286 0.0 0.504688 40.0 
6.10800 0.0 
9.06414 0.0 0.0680661 40.0 

20.0 0.0 0.0891865 15.0 
40.0 0.0 0.14 8.15815 

0.212971 8.5 
0.851737 0.01 0.30 11.9 

0.389930 20.0 
40.0 0.015 0.478789 40.0 
4.2 0,015 
1.95214 0.015 0.107246 40-0 
2.5 0.015 0.139936 20.0 
7.5 0.015 0.22 14.5294 

15.0 0.015 0.326850 20.0 
0.437571 40.0 

40.0 0.025 0.16 41.0484 
10.0 0.025 0.25 25.5223 
4.63629 0.025 0-381187 40.0 
4.39413 0.025 
4-54064 0.025 0.31 47.7070 
7.0 0.025 0-225 52.3278 

TABLE 6. Eigenvalues of 12 and R for u = 0.10 and & = 0. 

d& 

0.025 
0.025 

0.040 
0.040 
0.040 
0.040 
0.040 
0.04 
0.04 

0.06 
0.06 
0.06 
0.06 
0.06 
0.08 
0.08 
0.08 

0.10 
0.10 

4-2 
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FIGURE 6. &-R curves for laminar flow. 
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FIGURE 7. E-R curves for parallel flow and r = 0.10. 
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FIQURE 8. &-R curves for parallel flow and u = 0.25. 

0 1 I I  I I I  1 11 I I 1  

0.2 04 0.6 0.8 1 2 4 6 8 1 0  20 40 60 80 100 

R 

FIGURE 9. B-R curve for parallel flow and u = 0.50. 
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both neutrally stable and uniformly growing disturbances were studied. Eigen- 
values are tabulated in tables P 6 ,  and various stability curves are drawn in 
figures 6-9 and 11. 
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FIGURE 11. Neutral &-R, curves for parallel flow and various eddy-viscosity ratios. 
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6. Non-parallel flow correction 
The Orr-Sommerfeld equation has been derived under the assumption that 

the flow is parallel. At large Reynolds number, the growth of the boundary-layer 
thickness is relatively small, and the flow at a given distance may be re- 
garded as parallel. However, a t  low Reynolds number, there is a strong diver- 
gence of the streamlines of the main flow; the non-parallel effect has to be taken 
into account. For a free boundary-layer flow, the critical Reynolds number is 
usually expected to be small; however, it may still be of the order 5-10, and the 
growth of the boundary-layer thickness is not extremely large. Therefore, a 
first-order non-parallel correction to the values obtained from the stability of a 
parallel flow will be considered. In the linear stability theory, it is the interaction 
energy between the disturbance and the main flow that plays a role in the stability 
of the flow. Let the interaction energy density per unit volume be 

E = Re[E,(y)exp{i(ax+,&+yy-act)}]. (64) 
Then the local time rate of change of the energy density is 

aE 
- = ac,E. 
at 

The growth of the boundary-layer thickness tends to dilute the interaction 
energy density in the boundary layer. To the first order, 

A1 

dilution 1 ' 
where 1 = (vx*/nl)f is the characteristic thickness of the boundary layer and 
E is a dimensional quantity. Therefore 

Now, 

Thus 

E dl dx* 
dilution I ax" dt * 

1 dl 1 
and -_ - ~ 

ax" ax* 1 - - 
at at u1 1 ax* - 2x*' 

rg) =-E/2R.  
dilution 

The time rate of change of the energy density, taking into account the boundary 
layer growth, is then 

(67) 
E 

parallel 2R' 
Thus, with this correction, 

The same correction can be made for the turbulent flow. In  a fully developed 
turbulent flow the characteristic length is inversely proportional to x*; therefore, 
the correction for a turbulent shear layer is 
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where R,is the Reynolds number based on the total viscosity at  the centre of 
the mixing layer. 

The corrected neutral stability curves for cr = 0.10, cr = 0.25 and cr = 00 

have been plotted in figure 10. With this correction, it has been found that the 
neutral curves, which pass through the origin for parallel flow, do not pass through 
the origin with the non-parallel correction. The minimum critical Reynolds 
numbers are tabulated in table 3. For laminar flow, the neutral stability curve 
and curves corresponding to unstable disturbances (Ct = 0.05, 0.2) are given in 
figure 6. The neutral stability curve agrees very well with that obtained by 
Yamada (1965), when converted to his length scale. The neutral stability curve 
with the non-parallel correction is shown in figure 6. 

7. Discussion 
Numerical calculations have been performed for the case where I gF1 = I ugl 

and 6 = 8, = e2 = 45'. The results can be easily extended to the cases with 
arbitrary angle 8, by proper scaling of the reference velocity and the reference 
length. IBM 11 30 and IBM 360 computers were used for the stability calculations. 
Ten digit accuracy was maintained for computing mean turbulent velocity 
profiles. 

For R < 80, di is a monotonically increasing function of R, and the neutral 
di-R curve passes through the origin in all cases. The behaviour of the &-R 
curve, for small diR, is similar t o  that found by Esch (1957). This is because our 
velocity profiles, with the small second derivative of the velocity at  the centre 
of the flow, and a rapid approach of mean velocity to free stream velocity at  
its edge, have a characteristic similar to Esch's velocity profile. The non-parallel 
correction has a stabilizing effect, and the neutral stability curve, with this correc- 
tion, does not pass through the origin. 

We also note that the maximum value of the non-dimensional wave-number 
is approximately equal to 0.6. Thus the length scale of the disturbance 2: 10.45, 
the characteristic length of the flow. This supports our assumption that the length 
scale of the oscillations is large compared with the length scale of the turbulent 
eddies, and it is therefore reasonable to assume the same form for eddy viscosity 
as that used to express the interaction of the mean flow with turbulence. 

From various &-R curves, we conclude that laminar and turbulent shear layers 
under our investigation are unstable for small wavy disturbances with a parallel 
flow configuration, as well as with a non-parallel flow correction. From neutral 
&-Rt curves (figure l l ) ,  we conclude that, for small R,, increasing eddy viscosity 
has a destabilizing effect, whereas at  large R,eddy viscosity has a stabilizing effect. 
At small R,, once the flow is unstable, suitable components of the existing tur- 
bulence grow and develop into a large eddy system, which causes rapid entrain- 
ment (Townsend 1966). The rapid entrainment leads to an increase of turbulence 
intensity, and thus a decrease in cr (figure 11)) making the flow stable to the growth 
of large eddies, and causing existing eddies to lose energy. During this period, 
the entrainment is weak, so that the intensity decreases until the flow is un- 
stable to the development of large eddies of suitable scale. The cycle recurs; 
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the flow width and the size of the eddies also increases, which gives rise to a 
turbulent burst. The value of cr continues to decrease, and the characteristic 
length continues to increase. At a given R, the 00w traces a path on which R, 
decreases, d increases and CT decreases (figure 11). Thus, when cr+ 0, the flow may 
eventually leave the instability region. The deficiency of the linear stability analy- 
sis leads to the belief that the primary instability of the Tollmien-Schlichting 
type at small Rt gives rise to a secondary instability of the Taylor-Goertler type. 

The research for this paper was supported in part by a grant from the National 
Science Foundation. 

Phase velocity of disturbances Appendix 

For plane Poiseuille flow and plane Couette flow, Synge (1938) obtained a suffi- 
cient condition for stability. This condition was later extended to flows with 
infinite boundary conditions by Lessen (1952) and Pai (1954). However, Pai's 
results, which indicate that a minimum critical Reynolds exists for a free bound- 
ary layer, does not apply to a velocity profile of an odd function. 

Multiplying (37) by the complex conjugate of g, and integrating from y = - a3 
to y = co, one obtains 

idRZ(Iz, +a":) = 1; + 2&2I; + d41: + I/(T [ /Im G(g"g" + 2d2grg') dy 

where 

and the superscript 'bar' denotes the complex conjugate quantity. 
The imaginary part of (A 1 )  is 

dRE,.(12,+d21~) = dE[Re (&)I. 
If 0 is an odd function and 0' vanishes at  the boundaries 

J -a J -w 

Hence, Q is pure imaginary. Since 1; and 1; are both real and positive, the phase 
velocity of disturbances must vanish for the flow with an odd velocity profile. 

Lower bound of the neutral stability curves 

+ d 2 r  G"ggdy] -diB[Im(&)]. (A3) 
-a 
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Now, for real positive constants a and b,  

(g + a8'g' + bg") (g + a8'g' + bg'l) dy > 0. 

For an odd function 8, the above inequality reduces to 

b21; > I?(Zb - a2p*2) - I:. (A 5) 

Since G ( 7 )  is a positive, even function for the flow under consideration, and 
since IG(r)lm,, = 1, one can set 

/ ~ m G ( g " g " + 2 & 2 g f ~ ' + d 4 g ~ ) ~ ~  = G*(Ii+.Z&21;+E41g) (0 < G* < 1). (A6) 

For the assumed function G ( r )  ($5.1), (G") minimum = - 2A; therefore one 
can write co 

G"gjdy > - 2AI:, (A7) 

where A is real and positive. 
By substituting (A4)-(A5) into (A3), one obtains 

For stabilityEi < 0, the right-hand side of the above inequality should be negative; 
therefore one has 

(2Z2b2 + 2b - a2q*2) 

where a and b satisfy 
2E2b2 + 2b - a2q*2 > 0, ] 

and 

For 8 2  > 2 A / ( a  + G*) one chooses 

1 
1 - ( 2 A / z 2 ( a  + G*))  where K2 > 

The conditions (A 10) are satisfied, and (A 9) becomes 

This condition gives a lower bound for stability. As it is seen that when & 
becomes small, R is also small. The neutral stability curve may pass through the 
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origin of the &-R diagram. From all calculations for the laminar flow performed 
to  date, it actually does. However, when di2 < 2A/(a + G*) (A 10) does not hold. 
The lower bound for stability is not obtained. 
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